

ASTM A860 / A860M

Standard Specification for Wrought High-Strength Low-Alloy Steel Butt-Welding Fittings

GRADE

ASTM A860 / A860M WPHY42

ASTM A860 / A860M WPHY46

ASTM A860 / A860M WPHY52

ASTM A860 / A860M WPHY60

ASTM A860 / A860M WPHY65

ASTM A860 / A860M WPHY70

TYPE

ELBOWS LR, SR, BENDS, CROSSES, STUB ENDS, EQUAL TEES, UN-EQUAL TEES, CONCENTRIC REDUCERS, ECCENTRIC REDUCERS, CAPS

STANDARD

ANSI B16.9 ANSI B16.28 MSS-SP 75 MSS-SP 43 DIN 2605, 2625, 2626, 2617 BS 1640

SIZE RANGE

OD 1/2" - 72"

Chemical Requirements

Tesile Requirements & Chemical Requirements

TABLE 1 Chemical Requirements

Composition % Heat Analysis Carbon 0.2(A) Manganese 1.00-1.45 Phosphorus 0.030 Sulfur 0.010 Silicon 0.15-0.40(B) Nickel 0.5 © 0.3 © Chromium 0.25© Molybdenum 0.35© Copper 0.05 Titanium

All values are maximum unless a range is stated

Vanadium 0.10 Columbium 0.04 Vanadium Plus 0.12 Columbium Aluminum 0.06

A The carbon equivalent, as calculated by the following formula, shall not exceed 0.42%.

 $CE = C + \frac{Mn}{6} +$

Cr + Mo +V 5

15 B If vacuum carbon deoxidation is used, silicon shall not exceed 0.10% by heat analysis and 0.12% by product analysis.

C The sum of Ni + Cr +Mo +Cu shall not exceed 1.0%.

Mechanical Requirements

Mechanical Requirements

Property	Grade					
-	WPHY 42	WPHY 46	WPHY 52	WPHY 60	WPHY 65	WPHY 70
Yield strength, min ^A 0.2 % offset, ksi [MPa] Tensile strength, ksi [MPa]	42 [290] 60 [415]	46 [315] 63 [435]	52 [360] 66 [455]	60 [415] 75 [515]	65 [450] 77 [530]	70 [485] 80 [550]
	-85 [585]	- 88 [605]	- 91 [625]	- 100 [690]	- 102 [705]	-105 [725]
Elongation:						
Standard round specimen, or small-size proportional	25	25	25	20	20	20
specimen, min, % in 4D						
Rectangular specimen, for section thickness 5/16 in. [7.94 mm] and over, and for all small sizes tested in full section;	32	32	32	28	28	28
min, % in 2 in. [50 mm].						
Rectangular specimen for thickness less than 5/16 in. [7.94	В	В	В	В	В	В
mm]; min, % 2 in. [50 mm]. Width of specimen 11/2 in. [40						
mm].						
Toughness:						

C_venergy absorption^C; measured at −50°F [-46°C].

Size, mm	Average/min, ft·lbs[J]	Lateral Expansion min, MLS[mm]
103 10	30/25 [40/34]	25 [0.64]
103 7.5	25/21 [34/28]	21 [0.53]
103 5	20/17 [27/23]	13 [0.33]

^A Actual yield strength shall not exceed specified minimum by more than 15 ksi [105 MPa].

where:

= elongation % in 2 in. [50 mm], and

= actual thickness of specimen.

Hardness Requirements

Fittings shall have a maximum hardness of 22 HRC (235 HB).

⁸ For each ½:-in. [0.79 mm] decrease in section thickness below ¾6 in. [7.94 mm], a deduction of 1.5 % from the elongation value of specimens above ¾6 in. [7.94 mm] is permitted. When the section thickness lies between two values defined above, the minimum elongation value is determined by the following equation: E5 48t 1 15.00

^C These requirements are intended to minimize fracture initiation. The requirements are not intended to give assurance against fracture propagation.